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Sine-Gordon Equation in Curved Space-Time 
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We study the static solution of the sine-Gordon wave equation in a background 
geometry determined by a point mass in 1 + 1 dimension. 

The sine-Gordon system has been used in the study of a wide range of 
phenomena, including the propagation of crystal disturbances of waves in 
membranes of magnetic flux in Josephson times (Rajaraman, 1982). It also 
has been used in a two-dimensional model of elementary particles. 

Some time back Coleman (1975; Mandelstam, 1975) established rigor- 
ously the mapping from the sine-Gordon model to the massive Thirring 
model (Thirring, 1958; Klaiber, 1967) by the so-called bosonization pre- 
scription in 1 + 1 dimension. In this paper we study the static solution of 
the sine-Gordon wave equation (Rajaraman, 1982) in a background ge- 
ometry determined by a point mass in 1 + 1 dimension. Free-particle 
Klein-Gordon and Dirac equations in this kind of background have been 
studied by several authors (Mann et al., 1991; Browr et al., 1986). 
However, a solitary-wave-like solution for a nonlinear equation in this 
background has not been studied before. [For a discussion on sine-Gordon 
theory in flat space see Rajaraman (1982).] Our motivation for this study 
is twofold. One is to see, at least in the perturbation frame, what influence 
the background geometry has on a soliton-like solution. Also, many 
phenomena that are difficult to study in Fermi language have simple 
classical explanations in 1 + 1 dimension in the sine-Gordon field theory. 

In the following we derive the static solution of the sine-Gordon 
equation in the background geometry discussed in Mann et al. (1991). 
Consider two-dimensional Einstein gravity coupled to a sine-Gordon 
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system. The action for this system is given by 

As is well known, the Hilbert-Einstein term becomes a total derivative in 
two-dimensional space-time and hence by suitably choosing the boundary 
conditions one can easily see that gravity itself has no kinetic term. Varying 
equation (1) in the usual way, we get the equation of motion for 4 as 

Equation (2) can be simplified by the simple scaling 

- JA 
2 = m x ,  t = m t ,  $=-4 

m (3)  

Then equation (2) becomes 

1 
( g ) , 1 2  a,[(-g)'12g" &dl +sin d = 0 (4) 

(for the sake of brevity we omit the bar over x, t ,  and 4). 
We consider equation (4) in the background 

by the metric 

1 
ds = a(x) dx - --- dx 

 XI 
where a(x) satisfies the field equation 

d2 
-- a(x) = 4M a ( ~ )  

dx 

We consider the following solutions for a(x): 

gravitational field given 

( 5 )  

a(x) = 2Mlxl+ 1 corresponds to a naked source [a(x) = 2 ~ 1 x 1  - 1 
corresponds to the (exterior) black hole solution with horizons at the 
Schwarzchild radius alxl= 1/2M]. For the solution 

a(x) = 2Mlx 1 + 1 (7) 

equation (4) reduces to (for a static solution) 

- 2". d24  --, = sin 4 
dr (8) 

where 

2Mr = l n ( 2 ~ ( x (  + I )  (9) 
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The external black-hole region corresponds to the range of r, 
- c o < r < c o .  

The static localized solution of (8) in the absence of curvature (here 
M -+ 0, r -+ X) is given by (Rajaraman, 1982) 

4(r) = 4 t a r l [ exp( r  - ro)] soliton solution (lea) 

= -4 tanp'[exp(r - ro)] antisoliton solution ( 1 ob) 

For M # 0, the general solution of (8) cannot be obtained in closed form. 
However, in a weak background field the following method may be 
employed for a perturbative solution. We take, to the first order, 

and anticipate the soluticn of (8) in the form 

where 4,(r) is the solution given in (10a) or (lob). For definiteness we use 
the solution (10a). 

Putting (12) in (8) and using (lOa), we obtain to the first order in M 

The solution of (13) can be written in the form 

where 

and a, b are integration constants. We can choose a, b such that the 
asymptotic behavior of 4 for r + co remains unchanged, i.e., it has the 
same asymptotic behavior as $,(r). For this we find the large-r behavior 
of @(x/i,2, 1). Noting that @(x/ i ,  2, 1) can be written as a ( -x2 ,  2, 112) 
and using the result (Gradshteyn and Ryzhik, 1987) @(z, 1, u) = 
v -'F(I, v, I + v, z) with F(a, b, c, z )  the hypergeometric function, one can 
get the asymptotic behavior of e r  Re @(er/i, 2, 1) for the large-z behavior of 
F(a, b, c, 4. 

After some algebraic steps we get 

Hence we take a = 47cM and b = 0. In Fig. 1 we show the behavior of 4(r) 
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Fig. 1. Plot of 4(r) against r. (-) 4 =4n tan-'(e'); (- -) present solution with M =0.01; 
(- . -) present solution with M = 0.1. 

in the range 0 < r < GO for three values of M: M = 0, 0.01, and 0.1. It can 
be seen that for M # 0 the behavior of the graph is quite different from the 
M = 0 graph, though they merge when r + oo. But the convergence is slow 
if M differs significantly from zero. Our solution can be used to study the 
sine-Gordon field in (1 + 1)-dimensional curved space-time. 
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